942 research outputs found

    Quantum detection of electronic flying qubits

    Full text link
    We consider a model of a detector of ballistic electrons at the edge of a two-dimensional electron gas in the integer quantum Hall regime. The electron is detected by capacitive coupling to a gate which is also coupled to a passive RC circuit. Using a quantum description of this circuit, we determine the signal over noise ratio of the detector in term of the detector characteristics. The back-action of the detector on the incident wavepacket is then computed using a Feynman-Vernon influence functional approach. Using information theory, we define the appropriate notion of quantum limit for such an "on the fly" detector. We show that our particular detector can approach the quantum limit up to logarithms in the ratio of the measurement time over the RC relaxation time. We argue that such a weak logarithmic effect is of no practical significance. Finally we show that a two-electron interference experiment can be used to probe the detector induced decoherence.Comment: 15 pages, 7 figures, published versio

    Quantum Hall fractions for spinless Bosons

    Full text link
    We study the Quantum Hall phases that appear in the fast rotation limit for Bose-Einstein condensates of spinless bosonic atoms. We use exact diagonalization in a spherical geometry to obtain low-lying states of a small number of bosons as a function of the angular momentum. This allows to understand or guess the physics at a given filling fraction nu, ratio of the number of bosons to the number of vortices. This is also the filling factor of the lowest Landau level. In addition to the well-known Bose Laughlin state at nu =1/2 we give evidence for the Jain principal sequence of incompressible states at nu =p/(p+- 1) for a few values of p. There is a collective mode in these states whose phenomenology is in agreement with standard arguments coming e.g. from the composite fermion picture. At filling factor one, the potential Fermi sea of composite fermions is replaced by a paired state, the Moore-Read state. This is most clearly seen from the half-flux nature of elementary excitations. We find that the hierarchy picture does not extend up to the point of transition towards a vortex lattice. While we cannot conclude, we investigate the clustered Read-Rezayi states and show evidence for incompressible states at the expected ratio of flux vs number of Bose particles.Comment: RevTeX 4, 11 pages, 13 figure

    The spin-1 two-dimensional J1-J2 Heisenberg antiferromagnet on a triangular lattice

    Full text link
    The spin-1 Heisenberg antiferromagnet on a triangular lattice with the nearest- and next-nearest-neighbor couplings, J1=(1−p)JJ_1=(1-p)J and J2=pJJ_2=pJ, J>0J>0, is studied in the entire range of the parameter pp. Mori's projection operator technique is used as a method which retains the rotation symmetry of spin components and does not anticipate any magnetic ordering. For zero temperature four second-order phase transitions are observed. At p≈0.038p\approx 0.038 the ground state is transformed from the long-range ordered 120∘120^\circ spin structure into a state with short-range ordering, which in its turn is changed to a long-range ordered state with the ordering vector Q′=(0,−2π3){\bf Q^\prime}=\left(0,-\frac{2\pi}{\sqrt{3}}\right) at p≈0.2p\approx 0.2. For p≈0.5p\approx 0.5 a new transition to a state with a short-range order occurs. This state has a large correlation length which continuously grows with pp until the establishment of a long-range order happens at p≈0.65p \approx 0.65. In the range 0.5<p<0.960.5<p<0.96, the ordering vector is incommensurate. With growing pp it moves along the line Q′−Q1{\bf Q'-Q}_1 to the point Q1=(0,−4π33){\bf Q}_1=\left(0,-\frac{4\pi}{3\sqrt{3}}\right) which is reached at p≈0.96p\approx 0.96. The obtained state with a long-range order can be conceived as three interpenetrating sublattices with the 120∘120^\circ spin structure on each of them.Comment: 13 pages, 5 figures, accepted for publication in Physics Letters

    J1−J2J_1-J_2 quantum Heisenberg antiferromagnet on the triangular lattice: a group symmetry analysis of order by disorder

    Full text link
    On the triangular lattice, for J2/J1J_2/J_1 between 1/81/8 and 11, the classical Heisenberg model with first and second neighbor interactions presents four-sublattice ordered ground-states. Spin-wave calculations of Chubukov and Jolicoeur\cite{cj92} and Korshunov\cite{k93} suggest that quantum fluctuations select amongst these states a colinear two-sublattice order. From theoretical requirements, we develop the full symmetry analysis of the low lying levels of the spin-1/2 Hamiltonian in the hypotheses of either a four or a two-sublattice order. We show on the exact spectra of periodic samples (N=12,16N=12,16 and 2828) how quantum fluctuations select the colinear order from the four-sublattice order.Comment: 15 pages, 4 figures (available upon request), Revte

    Collinear N\'eel-type ordering in partially frustrated lattices

    Get PDF
    We consider two partially frustrated S = 1/2 antiferromagnetic spin systems on the triangular and pentagonal lattices. In an elementary plaquette of the two lattices, one bond has exchange interaction strength α\alpha (α≤1\alpha \leq 1) whereas all other bonds have exchange interaction strength unity. We show that for α\alpha less than a critical value αc\alpha_{c}, collinear N\'eel-type ordering is possible in the ground state. The ground state energy and the excitation spectrum have been determined using linear spin wave theory based on the Holstein-Primakoff transformation.Comment: Four pages, LaTeX, Four postscripts figures, Phys. Rev. B58, 73 (1998
    • …
    corecore